Schedule of Classes




2022 Fall: August 17 - December 13

Course Class No. Section Start & End Date Day Time Status Location
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
84910 6380 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Zimmer, Janet M Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
84911 7380 19 Oct 2022-13 Dec 2022 Closed Online
Faculty: Kinzel, Beate Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
86568 6381 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Wrightson, Christopher Michael Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
86703 7381 19 Oct 2022-13 Dec 2022 Closed Online
Faculty: Zimmer, Janet M Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
86801 6382 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Kinzel, Beate Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
87014 7382 19 Oct 2022-13 Dec 2022 Open Online
Faculty: Wrightson, Christopher Michael Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
87166 7383 19 Oct 2022-13 Dec 2022 Open Online
Faculty: Ferguson, Aaron J Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
Start date has passed. Please register for the next start date.
84914 6380 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Cook, John A Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
84915 7380 19 Oct 2022-13 Dec 2022 Closed Online
Faculty: Schultz, Christopher Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
Start date has passed. Please register for the next start date.
86554 6381 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Genao, Domingo Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
86739 7381 19 Oct 2022-13 Dec 2022 Open Online
Faculty: Cook, John A Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
Start date has passed. Please register for the next start date.
85251 6380 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Dean, Michael Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
Start date has passed. Please register for the next start date.
85252 6381 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Goldberg, Katherine Leaming Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
Start date has passed. Please register for the next start date.
85253 6980 21 Sep 2022-15 Nov 2022 Open Online
Faculty: Perkins, David C Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
85254 7380 19 Oct 2022-13 Dec 2022 Closed Online
Faculty: Tran, Anh L Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
86817 7381 19 Oct 2022-13 Dec 2022 Open Online
Faculty: Dean, Michael Syllabus Course Materials
DATA 335 Data Visualization (3)
Prerequisite: DATA 320. An overview of the fundamentals of data visualization principles in the context of business and data science. Practical focus on data visualization of different data types including time series, multidimensional data, creating dynamic tables, heatmaps, infographs, and dashboards. Hands on projects will require exploring data visually at multiple levels to find insights to create a compelling story and incorporating visual design best practices to better communicate insights to the intended audience, such as business stakeholders. Projects are selected from a wide range of content areas such as retail, marketing, healthcare, government, basic sciences, and technology.
84916 7380 19 Oct 2022-13 Dec 2022 Closed Online
Faculty: Heuermann, Lewis Edward Syllabus Course Materials
DATA 335 Data Visualization (3)
Prerequisite: DATA 320. An overview of the fundamentals of data visualization principles in the context of business and data science. Practical focus on data visualization of different data types including time series, multidimensional data, creating dynamic tables, heatmaps, infographs, and dashboards. Hands on projects will require exploring data visually at multiple levels to find insights to create a compelling story and incorporating visual design best practices to better communicate insights to the intended audience, such as business stakeholders. Projects are selected from a wide range of content areas such as retail, marketing, healthcare, government, basic sciences, and technology.
Start date has passed. Please register for the next start date.
86509 6380 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Goldberg, Katherine Leaming Syllabus Course Materials
DATA 335 Data Visualization (3)
Prerequisite: DATA 320. An overview of the fundamentals of data visualization principles in the context of business and data science. Practical focus on data visualization of different data types including time series, multidimensional data, creating dynamic tables, heatmaps, infographs, and dashboards. Hands on projects will require exploring data visually at multiple levels to find insights to create a compelling story and incorporating visual design best practices to better communicate insights to the intended audience, such as business stakeholders. Projects are selected from a wide range of content areas such as retail, marketing, healthcare, government, basic sciences, and technology.
86771 7381 19 Oct 2022-13 Dec 2022 Open Online
Faculty: Perkins, David C Syllabus Course Materials
DATA 430 Foundations of Machine Learning (3)
Prerequisite: DATA 300. A hands-on introduction to machine learning principles and methods that can be applied to solve practical problems. Topics include supervised and unsupervised, especially linear regression, logistic regression, decision tree, naïve Bayes and clustering analysis. Focus is on using data from a wide range of domains, such as healthcare, finance, marketing, and government, to build predictive models for informed decision making. Discussion also covers handling missing data, performing cross-validation to avoid overtraining, evaluating classifiers, and measuring precision.
Start date has passed. Please register for the next start date.
84919 6380 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Schultz, Christopher Syllabus Course Materials
DATA 430 Foundations of Machine Learning (3)
Prerequisite: DATA 300. A hands-on introduction to machine learning principles and methods that can be applied to solve practical problems. Topics include supervised and unsupervised, especially linear regression, logistic regression, decision tree, naïve Bayes and clustering analysis. Focus is on using data from a wide range of domains, such as healthcare, finance, marketing, and government, to build predictive models for informed decision making. Discussion also covers handling missing data, performing cross-validation to avoid overtraining, evaluating classifiers, and measuring precision.
84921 7380 19 Oct 2022-13 Dec 2022 Open Online
Faculty: Chesney, Steve L Syllabus Course Materials
DATA 440 Advanced Machine Learning (3)
Prerequisites: DATA 430 and MATH 140. A project-based study of advanced concepts and applications in machine learning (ML) such as neural networks, support vector machines (SVM), ensemble models, deep learning, and reinforced learning. Emphasis is on building predictive models for practical business and social problems, developing complex and explainable predictive models, assessing classifiers and comparing their performance. All stages of the machine learning life cycles are developed, following industry best practices for selecting methods and tools to build ML models, including Auto ML.
84917 7380 19 Oct 2022-13 Dec 2022 Open Online
Faculty: Menon Gopalakrishna, Prahlad Syllabus Course Materials
DATA 440 Advanced Machine Learning (3)
Prerequisites: DATA 430 and MATH 140. A project-based study of advanced concepts and applications in machine learning (ML) such as neural networks, support vector machines (SVM), ensemble models, deep learning, and reinforced learning. Emphasis is on building predictive models for practical business and social problems, developing complex and explainable predictive models, assessing classifiers and comparing their performance. All stages of the machine learning life cycles are developed, following industry best practices for selecting methods and tools to build ML models, including Auto ML.
Start date has passed. Please register for the next start date.
84918 6380 17 Aug 2022-11 Oct 2022 Open Online
Faculty: Herranz, Edward Syllabus Course Materials
DATA 445 Advanced Data Science (3)
Prerequisites: DATA 335 and DATA 430. A project-based introduction to the concepts, approaches, techniques, and technologies for managing and analyzing large data sets in support of improved decision making. Activities include using technologies such as Spark, Hive, Pig, Kafka, Hadoop, HBase, Flume, Cassandra, cloud analytics, container architectures, and streaming real-time platforms. Discussion covers how to identify the kinds of analyses to use with big data and how to interpret the results.
84923 7380 19 Oct 2022-13 Dec 2022 Open Online
Faculty: Dave, Linesh Ramesh Syllabus Course Materials
Top of Page