Schedule of Classes
Apply Now
Skip to Menu Toggle Button

2024 Fall: August 14 - December 10

Course Class No. Section Start & End Date Day Time Status Location
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
81989 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Kinzel, Beate Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
82030 6381 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Trajkovski, Goran Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
82081 6382 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Gathoni, Priscilla Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
82240 6383 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Ezzati, Parinaz Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
82357 6384 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Kulkarni, Shankar A Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
82466 6385 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Crombie, George W Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
84493 7380 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Zimmer, Janet M Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
84529 7381 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Moustafa, Rida E Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
84545 7382 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Thomas, Sunela S Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
84557 7383 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Kinzel, Beate Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
84773 7384 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Kulkarni, Shankar A Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
84796 7385 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Mintz, Rhonda S Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
84844 7386 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Gathoni, Priscilla Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
85341 4025 14 Aug 2024-08 Oct 2024 Th 6:30P-9:30P Open College Park (Hybrid)
Faculty: Britto, Joseph Solomon Bldg/Room: Hornbake Library (Undergrad) 1112 Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
Start date has passed. Please register for the next start date.
87062 6386 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Mintz, Renae S Syllabus Course Materials
DATA 200 Data Literacy Foundations (3)
An introduction to data and data literacy for students of all majors to enhance their ability to understand and work in today's data-driven world. The aim is to collect, manage, evaluate and apply data in a critical manner and examine the role, significance, and implications of data, including ethical issues within a society, in organizations, or for individuals. Developing skills in data manipulation, analysis, and visualization, students will generate insights from data, build knowledge, and make decisions. Topics include the effective use of cloud-based data storage, collaboration and communication techniques.
87443 7387 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Kamai, Moses M Syllabus Course Materials
DATA 230 Mathematics for Data Science (3)
Prerequisites: STAT 200 and MATH 115 (or MATH 107 and MATH 108) or higher. A practical introduction to the mathematical principles applied within the context of data science. The aim is to understand the mathematical basis of data science and increase awareness of machine learning algorithm assumptions and limitations. Machine learning topics include linear regression, dimensionality reduction, and classification. Projects involve application of linear algebra, probability, vector calculus, and optimization to build data science solutions.
84694 7380 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Ezzati, Parinaz Syllabus Course Materials
DATA 230 Mathematics for Data Science (3)
Prerequisites: STAT 200 and MATH 115 (or MATH 107 and MATH 108) or higher. A practical introduction to the mathematical principles applied within the context of data science. The aim is to understand the mathematical basis of data science and increase awareness of machine learning algorithm assumptions and limitations. Machine learning topics include linear regression, dimensionality reduction, and classification. Projects involve application of linear algebra, probability, vector calculus, and optimization to build data science solutions.
Start date has passed. Please register for the next start date.
86125 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Moustafa, Rida E Syllabus Course Materials
DATA 230 Mathematics for Data Science (3)
Prerequisites: STAT 200 and MATH 115 (or MATH 107 and MATH 108) or higher. A practical introduction to the mathematical principles applied within the context of data science. The aim is to understand the mathematical basis of data science and increase awareness of machine learning algorithm assumptions and limitations. Machine learning topics include linear regression, dimensionality reduction, and classification. Projects involve application of linear algebra, probability, vector calculus, and optimization to build data science solutions.
Start date has passed. Please register for the next start date.
86630 6381 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Holmes, Matthew R Syllabus Course Materials
DATA 230 Mathematics for Data Science (3)
Prerequisites: STAT 200 and MATH 115 (or MATH 107 and MATH 108) or higher. A practical introduction to the mathematical principles applied within the context of data science. The aim is to understand the mathematical basis of data science and increase awareness of machine learning algorithm assumptions and limitations. Machine learning topics include linear regression, dimensionality reduction, and classification. Projects involve application of linear algebra, probability, vector calculus, and optimization to build data science solutions.
86943 7381 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Holmes, Matthew R Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
Start date has passed. Please register for the next start date.
81990 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Zimmer, Janet M Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
Start date has passed. Please register for the next start date.
82025 6381 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Wardeh, Mohammed A Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
Start date has passed. Please register for the next start date.
82380 6382 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Holbert, Brian J Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
84494 7380 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Momtaz, Maliha Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
84530 7381 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Wardeh, Mohammed A Syllabus Course Materials
DATA 300 Foundations of Data Science (3)
Prerequisite: STAT 200. An examination of the role of data science within business and society. The goal is to identify a problem, collect and analyze data, select the most appropriate analytical methodology based on the context of the business problem, build a model, and understand the feedback after model deployment. Emphasis is on the process of acquiring, cleaning, exploring, analyzing, and communicating data obtained from variety of sources. Assignments require working with data in programming languages such as Python, wrangling data programmatically and preparing data for analysis, using libraries like NumPy and Pandas.
84723 7382 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Zeleke, Abebaw Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
Start date has passed. Please register for the next start date.
81996 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Dean, Michael Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
Start date has passed. Please register for the next start date.
81997 6381 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Tran, Anh L Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
Start date has passed. Please register for the next start date.
82972 6980 18 Sep 2024-12 Nov 2024 Open Online
Faculty: King, Brandon I Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
84503 7380 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Chulis, Kimberly Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
84703 7381 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Dean, Michael Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
Start date has passed. Please register for the next start date.
86942 6382 14 Aug 2024-08 Oct 2024 Open Online
Faculty: King, Brandon I Syllabus Course Materials
DATA 320 Introduction to Data Analytics (3)
Formerly DATA 220. Prerequisite: STAT 200. A practical introduction to the methodology, practices, and requirements of data science to ensure that data is relevant and properly manipulated to solve problems and address a variety of real-world projects and business scenarios. Focus is on the application of foundational statistical concepts to describing datasets with summary statistics, simple data visualizations, statistical inference, and predictive analytics. The objective is to use data to draw conclusions about the underlying patterns that drive everyday problems through probability, hypothesis testing, and linear model building.
87215 7382 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Alkaabi, Mahfood H Syllabus Course Materials
DATA 330 Business Intelligence and Data Management  (3)
A hands-on, project-based introduction to databases, business intelligence, and data management. The aim is to design secure industry-standard databases and utilize business intelligence and data management techniques and technologies to support decision making. Topics include data and relational databases, SQL queries, business intelligence tools and overall alignment with business strategy. Students may receive credit for only one of the following courses: DATA 330 or IFSM 330.
Start date has passed. Please register for the next start date.
86030 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Mintz, Rhonda S Syllabus Course Materials
DATA 330 Business Intelligence and Data Management  (3)
A hands-on, project-based introduction to databases, business intelligence, and data management. The aim is to design secure industry-standard databases and utilize business intelligence and data management techniques and technologies to support decision making. Topics include data and relational databases, SQL queries, business intelligence tools and overall alignment with business strategy. Students may receive credit for only one of the following courses: DATA 330 or IFSM 330.
Start date has passed. Please register for the next start date.
86031 6381 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Thomas, Sunela S Syllabus Course Materials
DATA 330 Business Intelligence and Data Management  (3)
A hands-on, project-based introduction to databases, business intelligence, and data management. The aim is to design secure industry-standard databases and utilize business intelligence and data management techniques and technologies to support decision making. Topics include data and relational databases, SQL queries, business intelligence tools and overall alignment with business strategy. Students may receive credit for only one of the following courses: DATA 330 or IFSM 330.
86034 5425 14 Aug 2024-08 Oct 2024 Th 6:30P-9:30P Open Laurel (Hybrid)
Faculty: Bryant, Richoun Denise Bldg/Room: Laurel College Center 504 Syllabus Course Materials
DATA 330 Business Intelligence and Data Management  (3)
A hands-on, project-based introduction to databases, business intelligence, and data management. The aim is to design secure industry-standard databases and utilize business intelligence and data management techniques and technologies to support decision making. Topics include data and relational databases, SQL queries, business intelligence tools and overall alignment with business strategy. Students may receive credit for only one of the following courses: DATA 330 or IFSM 330.
86035 7380 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Tran, Anh L Syllabus Course Materials
DATA 330 Business Intelligence and Data Management  (3)
A hands-on, project-based introduction to databases, business intelligence, and data management. The aim is to design secure industry-standard databases and utilize business intelligence and data management techniques and technologies to support decision making. Topics include data and relational databases, SQL queries, business intelligence tools and overall alignment with business strategy. Students may receive credit for only one of the following courses: DATA 330 or IFSM 330.
86036 7381 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Mintz, Renae S Syllabus Course Materials
DATA 330 Business Intelligence and Data Management  (3)
A hands-on, project-based introduction to databases, business intelligence, and data management. The aim is to design secure industry-standard databases and utilize business intelligence and data management techniques and technologies to support decision making. Topics include data and relational databases, SQL queries, business intelligence tools and overall alignment with business strategy. Students may receive credit for only one of the following courses: DATA 330 or IFSM 330.
86037 7382 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Heuermann, Lewis Edward Syllabus Course Materials
DATA 330 Business Intelligence and Data Management  (3)
A hands-on, project-based introduction to databases, business intelligence, and data management. The aim is to design secure industry-standard databases and utilize business intelligence and data management techniques and technologies to support decision making. Topics include data and relational databases, SQL queries, business intelligence tools and overall alignment with business strategy. Students may receive credit for only one of the following courses: DATA 330 or IFSM 330.
86038 7383 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Britto, Joseph Solomon Syllabus Course Materials
DATA 335 Data Visualization (3)
Prerequisite: DATA 320. An overview of the fundamentals of data visualization principles in the context of business and data science. Practical focus on data visualization of different data types including time series, multidimensional data, creating dynamic tables, heatmaps, infographs, and dashboards. Hands on projects will require exploring data visually at multiple levels to find insights to create a compelling story and incorporating visual design best practices to better communicate insights to the intended audience, such as business stakeholders. Projects are selected from a wide range of content areas such as retail, marketing, healthcare, government, basic sciences, and technology.
Start date has passed. Please register for the next start date.
82009 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Wrightson, Christopher M Syllabus Course Materials
DATA 335 Data Visualization (3)
Prerequisite: DATA 320. An overview of the fundamentals of data visualization principles in the context of business and data science. Practical focus on data visualization of different data types including time series, multidimensional data, creating dynamic tables, heatmaps, infographs, and dashboards. Hands on projects will require exploring data visually at multiple levels to find insights to create a compelling story and incorporating visual design best practices to better communicate insights to the intended audience, such as business stakeholders. Projects are selected from a wide range of content areas such as retail, marketing, healthcare, government, basic sciences, and technology.
Start date has passed. Please register for the next start date.
82236 6381 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Heuermann, Lewis Edward Syllabus Course Materials
DATA 335 Data Visualization (3)
Prerequisite: DATA 320. An overview of the fundamentals of data visualization principles in the context of business and data science. Practical focus on data visualization of different data types including time series, multidimensional data, creating dynamic tables, heatmaps, infographs, and dashboards. Hands on projects will require exploring data visually at multiple levels to find insights to create a compelling story and incorporating visual design best practices to better communicate insights to the intended audience, such as business stakeholders. Projects are selected from a wide range of content areas such as retail, marketing, healthcare, government, basic sciences, and technology.
84495 7380 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Ajayi, Rosiji O Syllabus Course Materials
DATA 335 Data Visualization (3)
Prerequisite: DATA 320. An overview of the fundamentals of data visualization principles in the context of business and data science. Practical focus on data visualization of different data types including time series, multidimensional data, creating dynamic tables, heatmaps, infographs, and dashboards. Hands on projects will require exploring data visually at multiple levels to find insights to create a compelling story and incorporating visual design best practices to better communicate insights to the intended audience, such as business stakeholders. Projects are selected from a wide range of content areas such as retail, marketing, healthcare, government, basic sciences, and technology.
84717 7381 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Wrightson, Christopher M Syllabus Course Materials
DATA 430 Foundations of Machine Learning (3)
Prerequisite: DATA 300. A hands-on introduction to machine learning principles and methods that can be applied to solve practical problems. Topics include supervised and unsupervised learning, especially linear regression, logistic regression, decision tree, naïve Bayes, and clustering analysis. Focus is on using data from a wide range of domains, such as healthcare, finance, marketing, and government, to build predictive models for informed decision-making. Discussion also covers handling missing data, performing cross-validation to avoid overtraining, evaluating classifiers, and measuring precision.
Start date has passed. Please register for the next start date.
81992 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Guevara, Yamil E Syllabus Course Materials
DATA 430 Foundations of Machine Learning (3)
Prerequisite: DATA 300. A hands-on introduction to machine learning principles and methods that can be applied to solve practical problems. Topics include supervised and unsupervised learning, especially linear regression, logistic regression, decision tree, naïve Bayes, and clustering analysis. Focus is on using data from a wide range of domains, such as healthcare, finance, marketing, and government, to build predictive models for informed decision-making. Discussion also covers handling missing data, performing cross-validation to avoid overtraining, evaluating classifiers, and measuring precision.
Start date has passed. Please register for the next start date.
82284 6381 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Chesney, Steve L Syllabus Course Materials
DATA 430 Foundations of Machine Learning (3)
Prerequisite: DATA 300. A hands-on introduction to machine learning principles and methods that can be applied to solve practical problems. Topics include supervised and unsupervised learning, especially linear regression, logistic regression, decision tree, naïve Bayes, and clustering analysis. Focus is on using data from a wide range of domains, such as healthcare, finance, marketing, and government, to build predictive models for informed decision-making. Discussion also covers handling missing data, performing cross-validation to avoid overtraining, evaluating classifiers, and measuring precision.
84497 7380 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Jemberie, Chalachew T Syllabus Course Materials
DATA 430 Foundations of Machine Learning (3)
Prerequisite: DATA 300. A hands-on introduction to machine learning principles and methods that can be applied to solve practical problems. Topics include supervised and unsupervised learning, especially linear regression, logistic regression, decision tree, naïve Bayes, and clustering analysis. Focus is on using data from a wide range of domains, such as healthcare, finance, marketing, and government, to build predictive models for informed decision-making. Discussion also covers handling missing data, performing cross-validation to avoid overtraining, evaluating classifiers, and measuring precision.
86944 7381 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Nath, Tanmay Syllabus Course Materials
DATA 440 Advanced Machine Learning (3)
Prerequisites: DATA 230 and DATA 430. A project-based study of advanced concepts and applications in machine learning (ML) such as neural networks, support vector machines (SVM), ensemble models, deep learning, and reinforced learning. Emphasis is on building predictive models for practical business and social problems, developing complex and explainable predictive models, assessing classifiers, and comparing their performance. All stages of the machine learning life cycles are developed, following industry best practices for selecting methods and tools to build ML models, including Auto ML.
Start date has passed. Please register for the next start date.
81991 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Cook, John A Syllabus Course Materials
DATA 440 Advanced Machine Learning (3)
Prerequisites: DATA 230 and DATA 430. A project-based study of advanced concepts and applications in machine learning (ML) such as neural networks, support vector machines (SVM), ensemble models, deep learning, and reinforced learning. Emphasis is on building predictive models for practical business and social problems, developing complex and explainable predictive models, assessing classifiers, and comparing their performance. All stages of the machine learning life cycles are developed, following industry best practices for selecting methods and tools to build ML models, including Auto ML.
84496 7380 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Rai, Paritosh Syllabus Course Materials
DATA 440 Advanced Machine Learning (3)
Prerequisites: DATA 230 and DATA 430. A project-based study of advanced concepts and applications in machine learning (ML) such as neural networks, support vector machines (SVM), ensemble models, deep learning, and reinforced learning. Emphasis is on building predictive models for practical business and social problems, developing complex and explainable predictive models, assessing classifiers, and comparing their performance. All stages of the machine learning life cycles are developed, following industry best practices for selecting methods and tools to build ML models, including Auto ML.
87077 7381 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Guevara, Yamil E Syllabus Course Materials
DATA 445 Advanced Data Science (3)
Prerequisites: DATA 335 and DATA 430. A project-based introduction to the concepts, approaches, techniques, and technologies for managing and analyzing large data sets in support of improved decision making. Activities include using technologies such as Spark, Hive, Pig, Kafka, Hadoop, HBase, Flume, Cassandra, cloud analytics, container architectures, and streaming real-time platforms. Discussion covers how to identify the kinds of analyses to use with big data and how to interpret the results.
Start date has passed. Please register for the next start date.
82190 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Burkhardt, Michael H Syllabus Course Materials
DATA 445 Advanced Data Science (3)
Prerequisites: DATA 335 and DATA 430. A project-based introduction to the concepts, approaches, techniques, and technologies for managing and analyzing large data sets in support of improved decision making. Activities include using technologies such as Spark, Hive, Pig, Kafka, Hadoop, HBase, Flume, Cassandra, cloud analytics, container architectures, and streaming real-time platforms. Discussion covers how to identify the kinds of analyses to use with big data and how to interpret the results.
84498 7380 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Dave, Linesh Ramesh Syllabus Course Materials
DATA 445 Advanced Data Science (3)
Prerequisites: DATA 335 and DATA 430. A project-based introduction to the concepts, approaches, techniques, and technologies for managing and analyzing large data sets in support of improved decision making. Activities include using technologies such as Spark, Hive, Pig, Kafka, Hadoop, HBase, Flume, Cassandra, cloud analytics, container architectures, and streaming real-time platforms. Discussion covers how to identify the kinds of analyses to use with big data and how to interpret the results.
87216 7381 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Burkhardt, Michael H Syllabus Course Materials
DATA 450 Data Ethics (3)
Prerequisite: DATA 430. A study of ethics within the context of data science, machine learning, and artificial intelligence. Emphasis is on examining data and model bias; building explainable, fair, trustable, and accurate predictive modeling systems; and reporting responsible results. Topics include the technology implications of human-centered machine learning and artificial intelligence on decision making in organizations and government and the broader impact on society, including multinational and global effects.
Start date has passed. Please register for the next start date.
82191 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Menon Gopalakrishna, Prahlad Syllabus Course Materials
DATA 450 Data Ethics (3)
Prerequisite: DATA 430. A study of ethics within the context of data science, machine learning, and artificial intelligence. Emphasis is on examining data and model bias; building explainable, fair, trustable, and accurate predictive modeling systems; and reporting responsible results. Topics include the technology implications of human-centered machine learning and artificial intelligence on decision making in organizations and government and the broader impact on society, including multinational and global effects.
84670 7380 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Duan, Chaojie Syllabus Course Materials
DATA 460 Artificial Intelligence Solutions (3)
(Designed to help prepare for the AWS Certified Machine Learning or Microsoft Designing and Implementing an Azure AI Solution exam.) Prerequisite: DATA 430. A hands-on, project-based study of artificial intelligence and machine learning solutions to complex problems. Topics include natural language processing, computer vision, and speech recognition.
Start date has passed. Please register for the next start date.
82192 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Bolton, Jeremy Syllabus Course Materials
DATA 460 Artificial Intelligence Solutions (3)
(Designed to help prepare for the AWS Certified Machine Learning or Microsoft Designing and Implementing an Azure AI Solution exam.) Prerequisite: DATA 430. A hands-on, project-based study of artificial intelligence and machine learning solutions to complex problems. Topics include natural language processing, computer vision, and speech recognition.
84671 7380 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Jha, Manoj K Syllabus Course Materials
DATA 460 Artificial Intelligence Solutions (3)
(Designed to help prepare for the AWS Certified Machine Learning or Microsoft Designing and Implementing an Azure AI Solution exam.) Prerequisite: DATA 430. A hands-on, project-based study of artificial intelligence and machine learning solutions to complex problems. Topics include natural language processing, computer vision, and speech recognition.
87391 7381 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Syllabus Course Materials
DATA 495 Data Science Capstone (3)
Prerequisites: DATA 440, DATA 445, and DATA 450. A project based, practical application of the knowledge, technical skills, and critical thinking skills acquired during previous study designed to showcase the student's data science expertise. individually selected projects include all phases of machine learning life cycles and a peer-reviewed final report and presentation. Topics are selected from student-affiliated organizations or employers, special government/private agency requests, or other faculty-approved sources in a wide range of domains, such as healthcare, financial services, marketing, sciences, and government.
84672 7380 16 Oct 2024-10 Dec 2024 Closed Online
Faculty: Chesney, Steve L Syllabus Course Materials
DATA 495 Data Science Capstone (3)
Prerequisites: DATA 440, DATA 445, and DATA 450. A project based, practical application of the knowledge, technical skills, and critical thinking skills acquired during previous study designed to showcase the student's data science expertise. individually selected projects include all phases of machine learning life cycles and a peer-reviewed final report and presentation. Topics are selected from student-affiliated organizations or employers, special government/private agency requests, or other faculty-approved sources in a wide range of domains, such as healthcare, financial services, marketing, sciences, and government.
84705 7381 16 Oct 2024-10 Dec 2024 Open Online
Faculty: Cook, John A Syllabus Course Materials
DATA 495 Data Science Capstone (3)
Prerequisites: DATA 440, DATA 445, and DATA 450. A project based, practical application of the knowledge, technical skills, and critical thinking skills acquired during previous study designed to showcase the student's data science expertise. individually selected projects include all phases of machine learning life cycles and a peer-reviewed final report and presentation. Topics are selected from student-affiliated organizations or employers, special government/private agency requests, or other faculty-approved sources in a wide range of domains, such as healthcare, financial services, marketing, sciences, and government.
Start date has passed. Please register for the next start date.
86124 6380 14 Aug 2024-08 Oct 2024 Open Online
Faculty: Rai, Paritosh Syllabus Course Materials
Top of Page